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THE EXTERNAL NEUMANN PROBLEM FOR A SEMI-INFINITE CYLINDER* 

S. Iu. BELIAEV and Iu. N. KUZ'MIN 

Neumann problem is considered in a region external to a semi-infinite cylinder. 
Boundary value problems are formulated for the coefficients of expansion of the 
solution into a Fourier series in azimuthal variables, and the method of dual inte- 
gral equations is applied to these problems. It is shown that the integralFredholm 
equation obtained in this manner have unique continuous solutions, which can be 
obtained using the iterative methods. The theory developed here is illustrated by 
the problem of a potential flow around a cylinder. 

1. Formulation of the problem and its reduction to dual integral equations. 
We require to find a solution of the Laplace equation 

Au = 0 (1.1) 

in the region outside a semi-infinite circular cylinder of unit radius. The solution should 
vanish at infinity, and satisfy the following conditions at the cylinder surface: 

(1.2) 

where f and g are given functions and r, cp, 2 are cylindrical coordinates. 
Expanding the solution into a Fourier series in terms of the azimuthal angle 

m 

u =$uoC(r, 2) + x 
(1.3) 

[u," (r, 2) cos ncp + %” sin nq] 
78-l 

we obtain the following boundary value problems for the coefficients of the expansion: 

(1.4) 

where % f, and g,, denote either u,,*, f,,O and &"Y or u,~, fR and g,,=. 
To solve the boundary value problem (1.41, we divide the outside of the cylinder into 

two regions I (Z-CO, O<r<m) and II(z>O, l<r<m) , and write the functions u, (r, z) 
in these regions in the form of integral expansions 

u,(r,z)={A,(h)J.(hr)&dh (z<O,O<r<<) 
II 

(1.5) 

OD K (vr) 
u, (r, 2) = + S n 

&’ (9 
e-hZdl. (z > 0, r > 1) 

0 0 

Here J, and Z?,,(r) are Bessel functions of first and third kind, and K, is a Bessel function 
of an imaginary argument. 

If f (r, cp) and g(z,cp) satisfy the Dirichlet conditions with respect to all variables 
and the integral of g(z,cp) from zero to infinity converges absolutely for a fixed cp, then 
the functions sought decreases at infinity and the boundary condition at the side surface of 
the cylinder holds. Satisfying the boundary condition at the end face of the cylinder and 
demanding that the function sought as well as its derivative in z are both continuous in the 
plane z = I) when r>l, enable us to reduce the problem to that of solving the following 
dual integral equations: 

r hA,(h)J,(hr)dh=f,(r), O<r<i, T A,, (h) J, (hr) dh. = F,, (r), r > 1 (1.6) 
0 0 
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The following auxilliary integral relation holds for A,(h) and %I (4 

m m H(l) (nr) 
Sk~,(k).~,(b)db+ j?J&(~)Im~d~=O, r>l 
II 0 n 

(1.7) 

2. Solution of dual integral equations. We assume that the function F,,(r) is 
given. Then a solution of the pair of equations (1.6) can be found e.g. as follows. The 
known formulas of the theory of Bessel functions /l/ show that the operators 

enable us, when applied to both parts of the equations (1.6) 
dual integral equations to a single integral Hankel equation 

Inversion of the formula 

yields a solution of the problem, provided that the functions f, 09 a-d F,,(r) are both known. 
In the present case however, the function F,,(r) is not known, therefore the function 

(2.1) 
m 

respectively, 

t>1, a',(t) 

to reduce these 

= A, IF,, @)I (2.1) 

(2.2) 

m,,(t) is also unknown in the interval 1 <t< 00. Let us denote q,(t) = m,(t) for I< t< cu. 
Relations (1.6) and (2.1) together with the known relations for the functions H,(l) , yield 
the following integral equation for q*(t): 

pn (t) = A2 lb, (r)l (2.3) 

Formula (1.7) makes it possible to express the function B,(h) in terms of A,(h), To do this 
it is sufficient to use the Weber-Orr inversion theorem /2/ 

B,(I)= - $p Im ([H!?(h)]‘H~‘(hp)) N (p)dp, N(p)=~~4&‘n(v)d~ 
1 0 

Relations (2.1) and (2.2) show that the function A,(h) can be written as two terms, one of 
them known, and the other expressed in terms %I (4 .- 

.x L 

A,,(h) = an (A) t v/i- i Qn (4 Jn+v, (XL) dt, 
1 

a, (h) = 1/s f t-“+‘kT,+,j, (it) dt 5 
0 0 

;;g dr 

Consequently, the function B,(h) can be written in the form of a sum 

_ 7 

B,(h) ; b, (A) L C, (h), b,(X)= - 5 pIm ([a~'(h)l'HI,"(hp)ld(~)d~, d(p)= \ w,(y)J,, (vp)dv 
1 6 

c,(h)= - 1 pIm (l&?(Ql'@@~)) T (p)dp, T(p)=! y 1/~J&p)dv~ ~,(4Jn+/e(4 dT 
1 0 1 

(2.4) 

(2.5) 

Here again, the first term b,(1) is known, and the second term can be written in terms of the 
function (IAl (t). From (2.5) and (2.3) we obtain an integral equation for Va(l) 

-v 

vn (4 = qn (4 
q:,/* 04 
IN(“Vb)l 

da ., (2.6) 
0 1L 
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Changing the order of integration in the last formula of (2.5), integrating by parts and 
applying the following relations of the theory of Bessel functions: 

vJ,(vp) =P-"'d[pn+' J,+1(vp)l/dp, I/s gk+l (vP)J,+Il* (VT) vz dv = E,(p,r) 
0 

p>7, E,=m+lp-n-l/l/p2-T2, P<T, E,=O, d (p-“H”’ (hp)]/dp = - hp-nH:$::l (hp) n 

J +IL (At) Jn+l,, (hr) - Re $$& H$, (At) H$,, (AT) 
i n I 

as well as the Hankel expansion theorem /l/ 

Smhl,+l,,(ht)dh~zB,(~) Jn+v,Wd~=(Pn(t) 
0 1 

we transform (2.6) to the form 

m 

(2.7) 

The last transformation was carried out, just as in /3/, with help of the Cauchy theorem. 
Equation (2.7) represents a Fredholm equation of second kind with kernel M,,(t, 2) , which 

can be expressed in terms of the quadratures of special functions. 
Let us introduce a new unknown function 

(2.8) 

The kernel of the corresponding integral equation is written for the function q,,(x) in a 
closed form. Indeed, taking into account (2.8) we can write (2.7) in the form 

v,,(t) =&n(t) + +j ~~G+v, W~,(s)lp,(r)dr (2.9) 
0 

From (2.9) and (2.8) we obtain an integral equation for the function % (2) 

(2.10) 

We shall show that equation (2.10) has a unique solution in the class of functions continuous 
and bounded at infinity. To do this (see e.g. /3,4/), it is sufficient to confirm that 

Using the known integrals /l/ 

we obtain 
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and from the formula /5/ 

InWW=~ t'if, -J,'(t) dt 
0 

it follows that the product I,,(r) K,(x) is a decreasing function of its argument, i.e. Z,‘(x) 
K,(~)/(I,(z)K~‘(~)< 1. This implies the inequality (2.11) and hence the uniqueness of the 
solution of (2.10). 

3. Potential flow past a semi-infinite cylinder. To illustrate the theory con- 
structed inSects.land 2, we consider a problem of potential flow of fluid past a semi-infinite 
cylinder, constant at infinity and inclined at the angle a to the cylinder axis. Let u(r,q,z) 
be the velocity potential of the problem, i.e. v = grad u, The Fourier series (1.3) consists 
in this case of two terms only, since the potential u0 of the velocities ug assumes the fol- 
lowing form at infinity: 

y0 = vOz ~0s OL - vOp sin a. cos cp 

To separate the singularities at infinity, we write the solution of the problem in the 
form 

Y (r, 'p, 2) = v0 ~0s a [z - u0 (r, z)l - u. sin a eos cp [r - u1 (r, z)], z < 0 (3.1) 

u (r. cp7 2) = u0 eos a I2 - u0 (r, z)] - u0 sin cz eos cp [(r + r-l) - u1 (r, z)], z>O 

and this enables us to assume that the unknown functions % (r* 4 and t~(r,e) decrease at in- 
finity. 

Taking now into account the condition of impermeability of the side surface of the cylind- 

er, we write the functions ~0 and u1 in the form of expansions (1.5), putting in the last 
equation .gn(6) = 0. The condition of impermeability of the end face of the cylinder and the 
continuity of the function u and of its derivative in z in the plane z=O for r> 1, yields 
two pairs of integral equations (1.6) in which 

f. (r) = 1, h,(r) = 0, f1 (r) = 0, JAI (r) = -1 / r (3.2) 

and two sets of conditions (1.7) for n=O and la= 1. 
Equations (2.10) for n=O, i have the form 

(3.3) 

The kernels of these equations can be obtained directly from the last formula of (2.10), by 
putting n=O, 1. To find the free term in the second equation of (3.3), we must remember that, 
according to (3.2), L(r)=0 , consequently in the second formula of (2.4) (21 (a) = 0. There- 
fore in (2.5) b,(h)=0 and this implies that ql(t)=pl(t; (see (2.6)). Since by virtue of (3.2) 
h(r)= -r-l , therefore from (2.3) follows 

Using this together with the second equation of (2.10), we obtain the integral for n=i to 
obtain S, (2) = --nR,(z) / (22) which corresponds to the free term in the second equation of (3.3), 
The free term in the first equation of (3.3) is found in the same manner. According to (2.4) 
we have, for n=O and fo(r)=i, 

a0 (a) = Zn-'Im [(t - A) .P / A*] (3.4) 

From (2.5) we obtain 

b,(a) = 2i+Sa [(ih - 1) 8,(*) (a) eiL/a*] (3.5) 

Since according to (3.2) p,,(t) is identically zero, (2.6) yields, after a series of transforma- 
tions, 

T-" 
q0 (0 = 1/s 

If 1 11(z) 
Yz 22-B 

--(l+nxdz (3.6) 
0 

Substituting (3.6) into the second equation of (2.10), we obtain the expression for So (2) in 
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the first equation of (3.3). 
Let us introduce new unknown functions 

s@)= (= + *) I1 (=) x*Kl w e-w + I, (z) e-y! D * (z) cu, (4 = ff (2) e-wz (4 (3.7) 

Then equations (3.3) will assume the form 

fz(=) 
%(Z) = zrr,tr)e-= [ 

-_i+$$], 

Lv 
Z(z+ it IL(z) 

Of(=)=--e-= 
x 

* [ ff z-- 
0 
&++(W!/] (3*8) 

Let us now write the coefficients A,(b) and E,(A) sought, in terms of o,(z)(n= 0,l). Taking 
into account (3.4) and (3.5) and the last relation of (2.5), we can write (2.4) and (2.5) in 
the form 

A,(h) = 1~0 [B,(i) +vri Q,(t) H$,*(W 4t] I B,, (h) = - Im {I@ (ul‘ [I$, (A) + I/x 3 Q’,, (tl R:j:!, ,* (htJ dtj} (3.9) 

1 1 

p* (k) = ZK'ifih - i)lP I ?b*, & (li) = 0 

Expressions (3.9) show that the coefficients of the expansions (1.5) in the case of the flow 
in question are given in terms of a single function of L. Putting 

D_(x) = B,(h) f @. $ #Q~(~)~~~~,~(~~)df (3.10) 
1 

we obtain 
Ai (A) = Re D,,(X), E,(h) = -tm ((H,(*)()i)~'R,(&).)) (3.11) 

From (2.9) and (3.7) it follows that the function vnfff can be written in terms of 0, (t) in 
the form 

(Sa(t)=I/g ~y(r);(t-l)xdx, p,(l)=-~~~~~~~+~~~~~.,~(~~)~x~,(~)d.~ 

0 0 

Subsituting these expressions into (3.10), we obtain 

Thus, having found the functions o, (:) from the integral equations (3.8) and having computed 
&(A) with help of (3.12), we obtain from (3.11) A,(h) and &,(A), and hence the functions 
I% (r. 2) and UX (rr 2) * This solves, in accordance with (3-l.), the problem of the flow in quest- 
ion. 

1. 

2. 

3. 

4. 

5. 
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